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FACULTAD DE CIENCIAS
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Abstract

We characterize and interpret the response of some microporous membranes
separating two electrolytic aqueous solutions. This is done by following a
transport model whose validity is tested by comparing experimental and
predicted values of saline permeability. The basic equations of the transport
model (the coupled Nernst-Planck and Poisson-Boltzmann equations) are
numerically solved. The concentration and potential membrane profiles are also

obtained for different pore radius and solution concentrations.

INTRODUCTION

Electrolyte transport through charged membranes has been extensively
studied. Most of this work has been carried out with membranes of high
charge densities. Such membranes represent highly nonideal systems,
which complicates the interpretation of the experimental results. Also, in
electroneutral transport, these membranes become virtually impermeable
to low concentrated electrolyte solutions because the coions are almost
absolutely excluded from the membrane phase. This limits the useful
experimental range to comparatively high concentrations of the electrolyte.

Some of these difficulties can be avoided when the charge density is low.
Then the measurements can include operations with dilute solutions,

whose treatment is easier.
243
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In the present work, two polycarbonate microporous membranes (pore
diameters: 0.1 and 0.003 um) are studied when they separate two
electrolytic aqueous solutions (of LiCl or MgCl,) whose concentrations
go from 0.1 to 100 mol/m’. Their properties involving the diffusional
transport of electrolytes are also analyzed. This is done within the
framework of a transport model that assumes the membrane is an array
of cylindrically-equal capillary pores with a uniform surface charge
density. This study leads to the numerical resolution of the Nernst-Planck
and Poisson-Boltzmann equations.

The exact solution of the Nernst-Planck and Poisson-Boltzmann
equations for membrane systems containing two ions has received much
attention (I, 2). Attempts to solve these equations analytically resulted in
asymptotic solutions for special cases. Numerical procedures, such as
those employed here, provide accurate, exact solutions for virtually all
realistic input parameters, and provide a versatility and ease of use not
obtainable with analytical approaches. Ever since Cohen and Cooley (3)
first applied such procedures (often referred to as digital simulations) to
membrane problems, they have found widespread use in a number of
areas (2).

The simulation procedure we developed has allowed us to 1) test the
validity of the space-charge model for electrolyte transport through
charged membranes with capillary pores by comparing the experimental
values of saline permeability with those calculated by means of the
model; and 2) to determine the axial and radial profiles of concentration
and electric potential of a membrane pore in steady-state conditions.
These examples illustrate some of the capabilities of the technique.

THEORY

A number of physical situations arise in which a charged porous
membrane separates two solutions of the same electrolyte but at different
concentrations. The effects of double layers on steady-state transport
through charged pores can be studied by means of the Poisson-
Boltzmann equation for electrostatic potential in the layers, together with
the Nernst-Planck equation for ionic fluxes (4).

In this way, when the pore length, /, is much bigger than its radius, a,
the flux of i/ species, J;, through the pore is described by

5(rx) = =D AT 4 2L ¢ px) OULD) | (1)
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where r and x are the radial and axial coordinates, c{r,x) is the
concentration of the i ion, D, is its diffusion coefficient, z; is its charge
number, T is the temperature, R is the gas constant, and F is the Faraday
constant.

The total electrical potential, ¢(r,x), can be written as

w(r.x) + En(x) (2)

o) = X

+F

where y(r,x) is the electrostatic potential arising from the double layer in
dimensionless form, while E,(x) is the potential whose difference
between the bulk solutions on each side of the membrane (the membrane
potential) can be measured.

The concentration, ¢{r.x), of the i ion follows a Boltzmann distribution,

¢r,x) = VE(x) exp ( - zi"w(r,x)) 3)

where v, is the stoichiometric coefficient of the i ion and ¢(x) can be
interpreted (5) as the equivalent bulk concentration that would be at
equilibrium with the solution in the pore cross section at axial position x.
The ends of the pores are assumed to be at equilibrium with the adjacent
bulk solutions.

The calculation of salt and charge fluxes by Eq. (1) requires (6) solution
of the Poisson-Boltzmann equation,

AN

where & = r/@ and Mx) is the equivalent Debye length defined by

vy = — R (5)

FZZZ,-V,-E(x)

€ being the dielectric constant.
Equation (4) must be solved with the boundary conditions given by:

a) The surface charge density, o, is equal to the radial potential gradient
at the pore wall (Gauss’ law):

_ oy _ z,F _
=1, ¢ = eRT ac (6)
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b) At the pore center, the radial potential gradient is zero due to
symmetry:

§=()’ i\y_= (7)

So, v depends explicitly on & with a/A and o as parameters, and it can be
evaluated for each given pair (@/A,c) by numerical resolution of Eq. (4)
with Egs. (6) and (7). The numerical method used here is explained in the
Appendix.

In Fig. 1 we show the profile v = y(#) for some values of a/A (i.e., of @
and ¢) and o. 1t is clear that the pore potential v at any given electrolytic
concentration and charge density is less in the N0l membrane than in
the N003 membrane.

The pore area-average electrical current,

I= EJ Gz J(rx) + z_J_(r.x))rdr (8)
0
and the pore area-average salt flux,
2 a
J= —gyf o (r.x) + J_(rx))rdr 9
0

can be written, by means of Eqs. (1)-(7), as

_ [ dE, RT[_ dIng
=)~ ] v, 8] |- (10)
and
[ dE, RT [_dIné
J—Lzl[ £ ]+L22 ‘ [ in ] (1

where the coefficients L, are functions of definite integrals involving

v(&a/r o)

2F2 1

=2 | F(ZiviD,e™" + zv_D_e -V +)EdE (12)
RT J,

1
Lyo=L, = %jﬁ E(zsv,Dye v + z_v_D_e-VE)EdE  (13)
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2 1
L, = ﬁJ; c(v,D,e v+ v_D_e "-V*+)EdE (14)

and therefore they can be calculated once the Poisson-Boltzmann
equation has been solved.

Any electrokinetic parameter can be evaluated as some function of the
L, coefficients. Our interest is focused here on the membrane potential
which, from Eq. (10) with zero current condition, is

E () —E0)=RT | L2gms (15)

Inzy 22

and on the saline permeability through the membrane, P, which, using
Egs. (10) and (11), can be expressed as

el ], e ) )
FAYG PR Ac(vy + v )y IAC(Vy + V) Tz,

2
X (Lz2 - i—”~>d Ing (16)

1

where I is the membrane porosity, J; is the electroneutral salt flux, and A
refers to a difference evaluated between the pore ends.

RESULTS AND DISCUSSION

We use here the membrane potentials and saline permeabilities
previously measured in order to test the validity of the transport model
that has been described before. These experimental results refer to two
track-etched polycarbonate membranes whose pore diameters are 0.1 and
0.003 um (NO1 and N003 membranes) separating two electrolytic (LiCl or
MgCl,) aqueous solutions whose concentrations range from 0.1 to 100
mol/m>. All the experiments have been carried out at 25.0°C.

In this study the steps followed have been:

a) The surface charge density on the pore walls, o, has been evaluated
from the experimental data on membrane potential for each mem-
brane, solute, and pair of concentrations by fitting the right-hand side
of Eq. (15) to them.

b) From these values of ¢ we predict the saline permeabilities, P2, and
compare them with the corresponding experimental values, P,*.



13: 08 25 January 2011

Downl oaded At:

248

MARTINEZ, HERNANDEZ, AND TEJERINA

Y (v) Y (V)
F~-2.0
F-1.0
L 1
00 0.5 1.0
A B8
Y (V) v (V)
F-3.0
—-30
L. -2.0
10
] 4 1 L i 1
00 1.0 20 3.0 00 10.0 200 300
rlA rix



13: 08 25 January 2011

Downl oaded At:

PERMEATION PROPERTIES OF CHARGED MEMBRANES 249

However, the directly measurable saline permeabilities are those of
the membrane system (membrane plus both the adjacent diffusion
layers), P,,,. So the P5® values in Tables 1 and 2 have been obtained by
assuming that the total diffusional resistance through the membrane
system, R, is related both to the intrinsic membrane resistance, R,
and to that of the boundary layers, R;, by

R,=Ry(1) + R,, + Rg(2) (17
or, equivalently,
1 ) 1 )
+ + 18)
P D) D) (

where § is the diffusion layers thickness (4) and D,(1) and D,(2) are
the mean diffusion coefficients of the salt in the diffusion layers. The
values of these diffusion coefficients for the mean concentrations in
the layers have been taken from the literature (6).

In Tables 1 and 2 we see that P*°" agrees with PZP. The small
differences are chargeable to the important dispersion (8, 9) of the
membrane porosities affecting P;,* and to the approximate character-
ization of the effect of the diffusion layers in Eq. (18).

In Tables 1 and 2 we show the values of the relative permeability,
Poo/pY (ie., nearly Po®/PY), where P° refers to the membrane
permeability calculated for ¢ = 0.

From an analysis of these results, the influence of 6 and a/A (the two
parameters of the model) on the relative permeabilities is concluded.
This effect is slightly different for MgCl, and LiCl solutions.

It is seen that the relative permeability has a maximum for a/A
about 4, and decreases when a/A moves away from this range.
Actually, it would go to zero when a/A did (great coion exclusion, and
therefore little electroneutral transport) and to one when a/A went to
infinite (little relevance of the double layer in the pore, ie., of the
surface charge density on its wall).

FiG. 1. Radial profile of w in a cross section of the pore, determined by the given value of c.

A)Membrane NOO3, Solute LiCl,

¢ =12mol/m’ o = ~0.0029 C/m?
B) Membrane N003, Solute LiCl, ¢

c

¢

1

10 mol/m?, ¢ = —0.0051 C/m?
1.5 mol/m3, 6 = —0.0052 C/m?
13 mol/m? o = -0.023 C/m?

C)Membrane N0O03, Solute MgCl,,
D)Membrane NO1, Solute MgCl,,
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d) In the framework of our model we have obtained the profiles of
concentration, ¢ = ¢(x), and electrical potential, E,, = F,(x), inside the
pores. Indeed, from Egs. (10) and (11) and applying the zero current
condition, we have

Jdx = —/—

RT(
¢

11

which, integrated from x =0, ¢ = ¢, (¢, being the concentration at
equilibrium with the bulk solution in x = 0), permits us to obtain¢ =
c(x).

Also, from Eq. (11) we have

E. () = f{( J , Ly RT dE(x))dx 20)

7:; L, c(x) dx

from which the profile of electric potential E, = E,(x) can be
obtained. Figure 2 show some relevant results on ¢ =¢(x) and
E, = E,(x).

e) Finally, in Fig. 3 we see some profiles of the ionic concentrations, ¢, (¥)
and ¢_(r), obtained from Eq. (3). These profiles show the net charge of
the solution in a pore cross section.

APPENDIX
Equation (4) is written as
aZ—W l a_ = ay __ by
6§2+§ FT: = Ale e’v] (A-1)

By means of two series expansion of e*¥ and ¢, this equation leads to

1 2’y 1 10
A(@—b) 08  A@-b) ¢ @

—

v _wa-b 1 A
ETA T a-sY WY

that, with the change
y =¢&lA(a - b)}'?

become
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FIG. 2. Axial profiles of E,, and ¢ inside the pore for some cases in Tables 1 and 2.

A) Membrane N003, Solute LiCl, o = —0.0034 C/m?
B) Membrane N0OO3, Solute LiCl, o = —0.0075 C/m?
C) Membrane NO1, Solute LiCl, ¢ = —0.0046 C/m?
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F1G. 1. See legend on page 256.
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FIG. 1. See legend on page 256.
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Ionic
concentrations
equivim
50 (eq )
L3.0
V.Cs
10 C
.3 .
00 0.025 0.05
r(nm)

1

F1G. 3. Radial profiles of ionic concentrations in a cross section of the pore, determined by
the value of ¢, for some cases in Tables 1 and 2.

= 0.753 mol/m?, 6 = —0.0031 C/m?
=601 mol/m’, ¢ = —0.0046 C/m?
C)Membrane N0O3, Solute LiCl, ¢ =0.754 mol/m3, o = —0.0027 C/m?
D)Membrane N003, Solute LiCl, ¢ =299 mol/m?, 6 = —0.0034 C/m?
E)Membrane N003, Solute LiCl, ¢ =43.1 mol/m’, & = —0.0075 C/m?
F) Membrane N003, Solute MgCl, ¢ = 0.404 mol/m?, 6 = —0.0026 C/m?
G)Membrane NO0O03, Solute MgCl,, ¢ = 1.64 mol/m?, ¢ = —0.0027 C/m?
H)Membrane N003, Solute MgCl,, ¢ = 26.35 mol/m?, 6 = —0.013 C/m?
I) Membrane NOI, Solute MgCl,, ¢ = 0.81 mol/m3, 6 = —0.0038 C/m?

A)Membrane NOI, Solute LiCl,
B) Membrane NO1, Solute LiCl,

. ca—-b 1 ;
R D e e A4 (A-3)

where ' and y” are the first and second derivatives of v with respect to y,
and y’ stands for the jth power of y. Since (a’ — b’) is divisible by (a — b),
the right-hand side of Eq. (A-3) is a polynomial in a and b.

On the other hand, v can be written as a double series:

2. Co,a'b™y,, (A-4)
nm=0

Then, substituting Eq. (A-4) in Eq. (A-3) and equating the terms of the
same order in a"b™, we get
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n 1 !
Yoo + ;\Voo — VYo =0

” 1 1
Vi + ;\Vm — Yo = G1o(Woo)
14 1 1
yo t ;\VOI = Wor = Gor(Woo) (A-5)

..................

” 1 ’
an + ;an - \Vnm = Gnm(\l’oo, \IllOs LECERE ] Wn—l,m—l)

The boundary conditions given by Egs. (6) and (7) in terms of y are
y'(0)=0 (A-6)

Fz.a

Vilmad =S With S = e ™

andymax = [A(a - b)] 12

(A-7)

The linear differential equations in the System (A-5) can be solved by a
parameters-variation method (10). We look for solutions accomplishing:

Yom(0) =0, for all n,m

(A-8)
V,.(0) =0, forallnm >0
with
— ’ _K (yl)Gnm(y ) y I (yl)Gnm(y )
Vun) = 1 [ oGm0y, + Ko(y) [ S
(A-9)

where I, and K, are the Bessel functions which are solutions of the
homogeneous part of each equation in (A-5) (I11), and

Wl(y).Ko(y1) = —1/y, (A-10)

is the Wronskian of Iy(y,) and Ky(y)).
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So the zero-order approximation for the solution (Eq. A-4) is

_S

V() = () = 1,5 mad)

1(y) (A-11)

where Eq. (A-7) has been taken into account and [, is the Bessel function
of order 1. In the same way, the first-order approximation is

V() = yi(y) = uyo(y) + 3a + buivi(y) (A-12)

where

y y
Vi) = Io(y) j YKy V0)dy: — Ko) f YAy, (A-13)
and u, is the solution of the polynomial,

%(a + b)u%\yiﬂ(ymax) + ulw{)(ymax) -85=0 (A-14)

Higher order approximations may be obtained in the same way. The
convergence of the method is tested by comparing each approximation
with the following one. The differences between ys and y, are negligible
in all cases studied, and this is why we have always taken v =
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