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Diff wive Salt Permeation Properties of Charged 
Membranes at Low Charge Densities. Experimental 
Verification of a Space Charge Model 

L. MARTINEZ, A. HERNANDEZ, and F. TEJERINA 
DEPARTAMENTO DE FISICA APLICADA 11 (TERMOLOGIA) 
FACULTAD DE CIENCIAS 
UNIVERSIDAD DE VALLADOLID 
47071 VALLADOLID. SPAIN 

Abstract 

We characterize and interpret the response of some microporous membranes 
separating two electrolytic aqueous solutions. This is done by following a 
transport model whose validity is tested by comparing experimental and 
predicted values of saline permeability. The basic equations of the transport 
model (the coupled Nernst-Planck and Poisson-Boltzmann equations) are 
numerically solved. The concentration and potential membrane profiles are also 
obtained for different pore radius and solution concentrations. 

INTRODUCTION 

Electrolyte transport through charged membranes has been extensively 
studied. Most of this work has been carried out with membranes of high 
charge densities. Such membranes represent highly nonideal systems, 
which complicates the interpretation of the experimental results. Also, in 
electroneutral transport, these membranes become virtually impermeable 
to low concentrated electrolyte solutions because the coions are almost 
absolutely excluded from the membrane phase. This limits the useful 
experimental range to comparatively high concentrations of the electrolyte. 

Some of these difficulties can be avoided when the charge density is low. 
Then the measurements can include operations with dilute solutions, 
whose treatment is easier. 
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In the present work, two polycarbonate microporous membranes (pore 
diameters: 0.1 and 0.003 pm) are studied when they separate two 
electrolytic aqueous solutions (of LiCl or MgClJ whose concentrations 
go from 0.1 to 100 mol/m3. Their properties involving the diffusional 
transport of electrolytes are also analyzed. This is done within the 
framework of a transport model that assumes the membrane is an array 
of cylindrically-equal capillary pores with a uniform surface charge 
density. This study leads to the numerical resolution of the Nernst-Planck 
and Poisson-Boltzmann equations. 

The exact solution of the Nernst-Planck and Poisson-Boltzmann 
equations for membrane systems containing two ions has received much 
attention (2 ,2) .  Attempts to solve these equations analytically resulted in 
asymptotic solutions for special cases. Numerical procedures, such as 
those employed here, provide accurate, exact solutions for virtually all 
realistic input parameters, and provide a versatility and ease of use not 
obtainable with analytical approaches. Ever since Cohen and Cooley (3) 
first applied such procedures (often referred to as digital simulations) to 
membrane problems, they have found widespread use in a number of 
areas (2). 

The simulation procedure we developed has allowed us to 1) test the 
validity of the space-charge model for electrolyte transport through 
charged membranes with capillary pores by comparing the experimental 
values of saline permeability with those calculated by means of the 
model; and 2) to determine the axial and radial profiles of concentration 
and electric potential of a membrane pore in steady-state conditions. 
These examples illustrate some of the capabilities of the technique. 

THEORY 

A number of physical situations arise in which a charged porous 
membrane separates two solutions of the same electrolyte but at different 
concentrations. The effects of double layers on steady-state transport 
through charged pores can be studied by means of the Poisson- 
Boltzmann equation for electrostatic potential in the layers, together with 
the Nernst-Planck equation for ionic fluxes (4). 

In this way, when the pore length, 1, is much bigger than its radius, Z, 
the flux of i species, J,, through the pore is described by 
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PERMEATION PROPERTIES OF CHARGED MEMBRANES 245 

where Y and x are the radial and axial coordinates, c,(rx) is the 
concentration of the i ion, 0, is its diffusion coefficient, zi is its charge 
number, T is the temperature, R is the gas constant, and F is the Faraday 
constant. 

The total electrical potential, Q(r,x), can be written as 

where y(r ,x)  is the electrostatic potential arising from the double layer in 
dimensionless form, while Ern(x) is the potential whose difference 
between the bulk solutions on each side of the membrane (the membrane 
potential) can be measured. 

The concentration, ci(r,x), of the i ion follows a Boltzmann distribution, 

where v, is the stoichiometric coefficient of the i ion and C(x) can be 
interpreted (5) as the equivalent bulk concentration that would be at 
equilibrium with the solution in the pore cross section at axial position x .  
The ends of the pores are assumed to be at equilibrium with the adjacent 
bulk solutions. 

The calculation of salt and charge fluxes by Eq. (1) requires (6) solution 
of the Poisson-Boltzmann equation, 

where 5 = r/ii and h(x) is the equivalent Debye length defined by 

ER T 

F Z ~ ~ , v , ~ ( x )  
P ( X )  = 

I 

E being the dielectric constant. 
Equation (4) must be solved with the boundary 

( 5 )  

conditions given by: 

a) The surface charge density, o, is equal to the radial potential gradient 
at the pore wall (Gauss' law): 
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246 MARTINEZ, HERNANDEZ, AND TEJERINA 

b) At the pore center, the radial potential gradient is zero due to 
symmetry: 

So, w depends explicitly on 5 with Zlh and (3 as parameters, and it can be 
evaluated for each given pair (Z/h,cr) by numerical resolution of Eq. (4) 
with Eqs. (6 )  and (7). The numerical method used here is explained in the 
Appendix. 

= ~ ( r )  for some values of Zlh (i.e., of Z 
and C) and 0. It is clear that the pore potential w at any given electrolytic 
concentration and charge density is less in the NO1 membrane than in 
the NO03 membrane. 

In Fig. 1 we show the profile 

The pore area-average electrical current, 

2F a z = -I,- (z+J+(r,x)  + z_J-(r,x))rdr 

and the pore area-average salt flux, 

can be written, by means of Eqs. (1)-(7), as 

Z=L+%] + L , q -  R T [  -- " ? I  
and 

where the coefficients L, are functions of definite integrals involving 
v(5; ad: 

_ -  )5dt  (13)  
2F I L12 = L z ,  = R T L  C(z+v+D+e-v + z v D-e-z-vtz+ 
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PERMEATION PROPERTIES OF CHARGED MEMBRANES 247 

and therefore they can be calculated once the Poisson-Boltzmann 
equation has been solved. 

Any electrokinetic parameter can be evaluated as some function of the 
L,, coefficients. Our interest is focused here on the membrane potential 
which, from Eq. (10) with zero current condition, is 

and on the saline permeability through the membrane, P,,,, which, using 
Eqs. (10) and (ll),  can be expressed as 

I HRT 
m ZA?(V+ + V-) 1 n 7 2  

x ( L2, - -- i:: )d  In C 

where ll is the membrane porosity, J ,  is the electroneutral salt flux, and A 
refers to a difference evaluated between the pore ends. 

RESULTS AND DISCUSSION 

We use here the membrane potentials and saline permeabilities 
previously measured in order to test the validity of the transport model 
that has been described before. These experimental results refer to two 
track-etched polycarbonate membranes whose pore diameters are 0.1 and 
0.003 pm (NO1 and NO03 membranes) separating two electrolytic (LiCl or 
MgC12) aqueous solutions whose concentrations range from 0.1 to 100 
mol/m3. All the experiments have been carried out at 25.0"C. 

In this study the steps followed have been: 

a) The surface charge density on the pore walls, 0, has been evaluated 
from the experimental data on membrane potential for each mem- 
brane, solute, and pair of concentrations by fitting the right-hand side 
of Eq. (1 5) to them. 

b) From these values of CJ we predict the saline permeabilities, P p ,  and 
compare them with the corresponding experimental values, PEP. 
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However, the directly measurable saline permeabilities are those of 
the membrane system (membrane plus both the adjacent diffusion 
layers), P,,. So the p","p values in Tables 1 and 2 have been obtained by 
assuming that the total diffusional resistance through the membrane 
system, R,, is related both to the intrinsic membrane resistance, R,, 
and to that of the boundary layers, R6, by 

R ,  = R,(1) + R ,  + R6(2) ( 1 7 )  

or, equivalently, 

where 6 is the diffusion layers thickness (4 )  and Dd(l) and Dd(2) are 
the mean diffusion coefficients of the salt in the diffusion layers. The 
values of these diffusion coefficients for the mean concentrations in 
the layers have been taken from the literature (6). 

In Tables 1 and 2 we see that P p  agrees with P z p .  The small 
differences are chargeable to the important dispersion (8, 9) of the 
membrane porosities affecting Pzp  and to the approximate character- 
ization of the effect of the diffusion layers in Eq. (18). 

c) In Tables 1 and 2 we show the values of the relative permeability, 
PF'lPi (i.e., nearly P g p / P i ) ,  where P: refers to the membrane 
permeability calculated for o = 0. 

From an analysis of these results, the influence of o and Zlh (the two 
parameters of the model) on the relative permeabilities is concluded. 
This effect is slightly different for MgCl, and LiCl solutions. 

It is seen that the relative permeability has a maximum for iilh 
about 4, and decreases when Zlh moves away from this range. 
Actually, it would go to zero when iilh did (great coion exclusion, and 
therefore little electroneutral transport) and to one when iilh went to 
infinite (little relevance of the double layer in the pore, i.e., of the 
surface charge density on its wall). 

FIG. 1. Radial profile of w in a cross section of the pore, determined by the given value of C. 

A) Membrane N003, Solute LEI,  7 = 1.2 mol/m3, u = -0.0029 C/m2 
B) Membrane N003, Solute LiCl, C = 10 mol/m3, u = -0.0051 C/m2 
C) Membrane N003, Solute MgCI2. 7 = 1.5 mol/m3, o = -0.0052 C/m2 
D)Membrane NO], Solute MgCI,, C = 13 mol/m3, u = -0.023 C/mZ 
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d) In the framework of our model we have obtained the profiles of 
concentration, C = Z(x), and electrical potential, Em = E,(x), inside the 
pores. Indeed, from Eqs. (10) and (1 1) and applying the zero current 
condition, we have 

which, integrated from x = 0, Z = C, being the concentration at 
equilibrium with the bulk solution in x = 0), permits us to obtain C = 
C ( X ) .  

Also, from Eq. (1 1) we have 

from which the profile of electric potential Em = E,,,(x) can be 
obtained. Figure 2 show some relevant results on C = Z(x) and 
E,,, = E,(x). 

e) Finally, in Fig. 3 we see some profiles of the ionic concentrations, c+(r) 
and c-(r), obtained from Eq. (3). These profiles show the net charge of 
the solution in a pore cross section. 

APPENDIX 

Equation (4) is written as 

By means of two series expansion of eaW and ebv, this equation leads to 

w J  (A-2) 
1 l a w -  2 a J  - bJ 1 

~~ 

1 d2W + 

A(a  - b )  A(a - b )  5 d< j !  a - b 

that, with the change 

become 
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FIG. 2. Axial profiles of Em and inside the pore for some cases in Tables 1 and 2. 

A) Membrane N003, Solute LiCI, o = -0.0034 C/m2 
B) Membrane N003, Solute LiC1, o = -0.0075 C/m2 
C) Membrane NO1, Solute LiCl, o = -0.0046 C/m2 
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FIG. 1. See legend on page 256. 
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I 

FIG. 3. Radial profiles of ionic concentrations in a cross section of the pore, determined by 
the value of 7, for some cases in Tables 1 and 2. 

A)Membrane NO1, Solute LiCI, c = 0.753 mol/m3, u = -0.0031 C/m2 
B) Membrane N01, Solute LiCl, c = 6.01 mol/m3, u = -0.0046 C/m2 
C) Membrane N003, Solute LiCl, 7 = 0.754 mol/m3, u = -0.0027 C/m2 
D)Membrane N003, Solute LiCl, = 2.99 mol/m3, u = -0.0034 C/m2 
E) Membrane N003, Solute LiCl, Z = 43.1 mol/m3, u = -0.0075 C/m2 
F) Membrane N003, Solute MgCI,, = 0.404 mol/m3, u = -0.0026 C/m2 
G)Membrane N003, Solute MgCl,, F = 1.64 mol/m3, u = -0.0027 C/m2 
H)Membrane N003, Solute MgCl,, = 26.35 mol/m3, u = -0.013 C/m2 
I) Membrane NOI, Solute MgCI,, Z = 0.81 mol/m3, u = -0.0038 C/m2 

(A-3) 

where iy' and are the first and second derivatives of w with respect toy, 
and W' stands for the j th power of W. Since (a' - b') is divisible by (a - b), 
the right-hand side of Eq. (A-3) is a polynomial in a and b. 

On the other hand, ty can be written as a double series: 

Then, substituting Eq. (A-4) in Eq. (A-3) and equating the terms of the 
same order in db", we get 
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1 
Y 

w:o + -w;o - woo = 0 

1 
Y 

W;lo + -w:o - WlO = GlO(W00) 

(A-5) 

. . . . . . . . . . . . . . . . .  

The boundary conditions given by Eqs. (6) and (7) in terms of y are 

w'(0) = 0 64-61 

Fz +C 
y/(ymaX) = S withS = andy,,, = [A(a - b)] ' /Z  ERT[A(a - b)]"' 

(A-7) 

The linear differential equations in the System (A-5) can be solved by a 
parameters-variation method (10). We look for solutions accomplishing: 

w,&,(O) = 0, foralln,m 
(A-8) 

w,,,(O) = 0, for all n,m > 0 

with 

(A-9) 

where I. and KO are the Bessel functions which are solutions of the 
homogeneous part of each equation in (A-5) (II), and 

~ ~ ~ O ( Y l ) J O ( Y J )  = - l/Yl (A-10) 

is the Wronskian of IoCyl) and K b , ) .  
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So the zero-order approximation for the solution (Eq. A-4) is 

(A-1 1) 

where Eq. (A-7) has been taken into account and I I  is the Bessel function 
of order 1. In the same way, the first-order approximation is 

where 

and u I  is the solution of the polynomial, 

Higher order approximations may be obtained in the same way. The 
convergence of the method is tested by comparing each approximation 
with the following one. The differences between ws and y6 are negligible 
in all cases studied, and this is why we have always taken y~ = w6. 
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